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Abstract

We describe a method for obtaining an analytic form for the inverse of
a finite symmetric banded Toeplitz matrix. Explicit formulae are given for
the tridiagonal and pentadiagonal cases and the results are applied to the
evaluation of the Green’s function for nearest and next-nearest neighbour
one-dimensional tight-binding systems.

1 Introduction

A Toeplitz matrix A has elements A, ; with the property A, ; = a(s —j). In the
case of semi-infinite matrices (s,j = 0,1,...) necessary and sufficient conditions
have long been known [1, 2] for the existence of an inverse and for finite matrices
the inverse can be computed numerically using the Trench algorithm [3]. The eigen-
values and eigen-vectors for the finite symmetric tridigonal case were obtained by
Streater [4]. These results provide an expression for the inverse matrix, which has
also been obtained by Hu and O’Connell [5] from a calculation of the determinant
and cofactors of the matrix. The inverse of the symmetric tridiagonal matrix can
be used in the solution of various single-charge-tunnelling problems and of the one-
dimensional Poisson equation with Dirichlet boundary conditions. It also provides
the Green’s function for a one-dimensional homogeneous nearest-neighbour tight-
binding system with open boundaries [6].

The rescaling method for excitations in tight-binding systems [7, 8] and quantum
spin chains [9, 10] uses a transfer matrix approach. This has the potential to provide
a generalization of Hu and O’Connell’s result to all N x N matrices A, with elements!
of the form

alls— ) it |s—j| <n,
(sIA) = { 1 ifs—jj=n,  n<N. M
0 if |s — j| > n,
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In sections 1 and 2 we describe this procedure and give explicit formulae for band-
widths 2n+1 = 3 and 2n+ 1 = 5. In section 3 these results are applied to first and
second neighbour tight-binding models on a finite one-dimensional lattice.

2 Method
Given that B is the inverse of A,
B(s)
Y allk])(s + kIBlj) = 4, (2)
k=a(s)
where
a(s) =Max{l — s, —n}, B(s) = Min{N — s,n}. (3)
We define
b(s—n+1,j)
b= | TR Q
b(s + n,j)

where b(s, j) = (s|Blj) if 1 <s,j < N and zero otherwise, and the transfer matrix

—a(n-1) —a(n-2) -+ —a(0) -+ —aln-1) -1
1 0 0
0 1 0
T= i . : . : : . (5)
0 0 0
0 0 1 0

Then equation (2) can be expressed in the form
Tbs(]) :bsfl(j) _6S7j||1>‘ (6)
Iterating (6) gives

~ [ T7boe(j), if j > s.
bs(.]) - { Tfsbo(j) _ T7(87j+1)|1> lf] S s, (7)

The vector by (j) has zeros in the first n elements and so equation (7) gives

n

> (0| T7%|k + n)b(k, j), if j > s,

b(s.j) =4 "5 , (8)
S (T2 |k +nb(k, ) — (o T-C=HD|1), i j <.
k=1

The vector by (j) has zeros in the last n elements, so, from (7),
0= (m+n|T N|k+n)b(k, j)—(m+n|T N1 m=1...n (9
k=1
From (8) the N elements of the j-th column of B are given as as linear combinations
of the first n elements which are in turn given as solutions of the n linear equations

(9)-



The remaining problem is to obtain an expression for the elements of powers of
the transfer matrix T. We define the functions

2n—j

¢i(w) = > alln —r)u"t j=0,1,...,2n. (10)
r=0

It is then not difficult to show that the eigen-values of T are the roots uy, ,u,;l,
k=1,...,nof

$o(p) =0, (11)
with corresponding orthonormal left and right eigen-vectors
o i
o =| L ww=| T (12)
bon (1) Yan (1)
where
B _ufsfl
Thus
(sIT™5) = > {ba(ir) b ()i + s (g, )b (g, s ™ }- (14)
k=1

A more compact form is obtained by setting

= exp(if) (15)

when we have

(SIT™) = ujlm —s+1),  s,5=1,...,2n, (16)
where, for j = 1,...,2n and any integer ¢,
2n—j n .
. ) sin{(n+£¢—1r—1)0;}
w()= 3 alln —j—r) Y S (1)
r=0 k=1
and 64,...,0, are the roots of
n—1
0= F(f) = cos(nb) + $a(0) + > _ a(r) cos(rf). (18)
r=1

It follows from (4) and (14) that

—ui (£ —1), for j = 2n,

u;(l) = { —a(jn — j)ur (£ = 1) +ujpi (€ — 1), for1<j < 2n. (19)

Iterating the second of equations (19) and comparing with (17) we obtain the result

wr(€) = —usn(l+1) = — é —Sin{;?, (;k‘;)e’“}. (20)
We now define the set of n x n matrices
Unt1(=C—n) Unt2(—€—m) - up(—€—n)
T T B e AR EYY
Unt1 (=4 “on+ 1) Upgo(—f ot 1 - N Uon(— “ong 1)



and, from (8), (9), (16) and (20)
—(1U(s = DUN)]TU(N = j)In), if j > s,
b(S,]) =

—(1{U(s = DU TU(N —j) =U(s = 1= j)}[n), ifj<s,

(22)

3 Explicit formulae

We use the procedure of the previous section to rederive the (n = 1) result of Hu
and O’Connell [5] and to give the formula for the case n = 2.

3.1 Thecasen=1
Now U(¢) is a 1 x 1 matrix with

U(l) = u1(f) = —us(£ + 1) = Up(cos(M)), 2 cos() = —a(0), (23)
where
_ sin{(¢ + 1)0}
Uy(cos(9)) = sn(@) (24)
is the Chebyshev polynomial of the second kind. From (22)
~ cos{(N+1—]|s—j])8} —cos{(N+1—s—j)6}
b = . 2
(s,7) 2sin(f) sin{(N + 1)6} (25)
With the substitution
A, if a(0)] <
=< i) if a(0) < — (26)
iAX+7 ifa(0) >2
for real A, this is the result obtained by Hu and O’Connell [5].
3.2 The case n =2
Let (; = cos(fy), k = 1,2. Then, from (18),
2(1 + 2(1(2) = G(O),
27
2AG+G) = —a(l). 27
We define
Uy (G) — Ug(C2)
Vi) = ————>- 28
V=30 2%)
and, from (24), (28) and (21),
V(=4 = -V -2). (29)
U = V)Vl+n—-2)—Vl+n—-1) Vl+n-—2) (30)
o V)V +n—-1)—V({+n) Vl+n-1))"°
Substituting into (22) it can be shown, after some manipulation, that
F(s,7, N;61,02) , ifj>s,
s, ) =4 T ) (31)
F(j,8,N;01,0-) if j <s,

F(1,—1,N;61,62)’



where
F(s,7,N;61,62) = V(s — 1)W(N — j,N + 1) — V(s)W(N — j,N) (32)
and
W(s,j) = V(s + DV(j) — V(s)V(j + 1). (33)
From (24), (28) and (33

)
F(s,7,N;01,605) = fi(s—74,N;0.,02) — fi(s — j,N;02,61)
g1(s = J,N;61,02) — g1(s — j,N;02,601)
fa(s+ 4, N;61,02) — fa(s + j,N;02,601)
g2(s+j,N;01,02) — ga(s + j,N;02,61)
f3(8,5,N;01,02) — f3(s,4,N;62,61)
93(8,4, N;61,02) — g3(s, j, N;02,01)
f3(s,5, N3 61, —02) — f3(s, 4, N;—02,61)
93(s,7, N; 01, —02) — g3(s, j, N; —02,61), (34)
where
fi(k,N;0,,02) =  sin(f2) cos(01k){2cos(26;, + 61 N) sin(205 + 62 N)

—cos(361 + 61 N)sin(f2 + 62 N)
— 005(91 + 91N) sin(392 + GQN)},
g1 (k‘, N; 01, 92) = sin(02) sin(01 k){2 sin(01) sin(02)
-2 sin(201 + 91N) sin(292 + 92N)
+ sin(301 + 91 N) sin(02 + 02N)
+ Sin(01 + 01N) sin(302 + 02N)},

fQ(k, N; 04, 02) = 2 sin(Hg) 005(91 k) 005(01 + 01N) sin(292 + 02N)
x{cos(f2) — cos(61)},
gs (k?, N, 01, 92) = 2 sin(92) sin(t‘)lk:) sin(01 + 01N) sin(202 + 92N) (35)

x {cos(fz) — cos(61)},
fa(s,j,N;01,02) = sin(61)sin(f2) cos(f1s — 027)

x{cos(f2) — cos(61)

+cos(fy + 61N — 205 — 6>N)

— COS(92 + 92N — 291 — 01N)},
93(s,7,N;01,02) = sin(61) sin(fs) sin(fys — 62))

x {sin(fz) + sin(6;)

+ Sin(01 + 01N — 292 — 02N)

+sin(02 + 02N — 201 — 01N)}

4 Tight-binding systems
The Hamiltonian of an n-th neighbour tight-binding system on a one-dimensional
lattice of NV sites is given by

N B(s)

H=3 > Is)kx(s+kl, (36)

s=1 k=a(s)

where a(s) and 3(s) are given by (3). The Green’s function operator G(N; E) is
defined, for energy E, by

G(N;E)Y{EI—H} =1. (37)
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Figure 1: Local density of states at site s = 5 plotted against -y for a one-dimensional
nearest-neighbour tight-binding system of N = 100 sites.

Thus, with the identification,

- E
a(0) = —2y = 605 : a(k) ==, k=1....n, (38)
n n

(s|G(N59)15) = =b(s, ) /en. (39)
The local density of states p(IV, s;y) at site s is given by
S{(sIG(N, 7 +18)]s)}

p(N,s;7) = = lim_ - (40)
For the nearest-neighbour model (n = 1) the diagonal elements of the Green’s
function are given, from (25), as
A cos{(N + 1)8} — cos{(N + 1 — 25)0
(16N sy = - A2} oot } (1)

2¢1 sin(f) sin{(N + 1)0} ’

where, from (23), § = arccos(y). As an example, a plot of p(100,5;v) is shown
in Fig. 1. In computing this curve § was chosen to have the value 0.001. Since
the density of states for real v is, as indicated in (40), given by the limit § — 0,
the effect of a small non-zero 4 is to replace delta function singularities by steep
lorentzians.

A similar analysis applies to the next-nearest-neighbour chain (n = 2), using
the formulae (33), (35) and (36) for b(s, j), where, from (27),

cos(f12) = —H{E £ V/E +8(1+7)}, (42)

with £ = &1/e2. A Plot of p(100, 5; ) for this model with £ = 0.5 is shown in Fig.
2. Again 0 has the value 0.001.

The local density of states at site s of a semi-infinite chain would be given in
the limit of large IV and the result for an infinite homogeneous chain is obtained by
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Figure 2: Local density of states at site s = 5 plotted against -y for a one-dimensional
next-nearest-neighbour tight-binding system of N = 100 sites with & = 0.5.

5

the second limit s — oo. Alternatively the limit as N — oo of the mean density of
states

1 N
o(Niv) = > p(N,s;7) (43)

s=1

will yield the result for an infinite homogeneous chain. A plot of ¢(100;) for the
nearest neighbour model is shown in Fig. 3. The well-known basin-shaped curve
[6] for the density of states of the infinite homogeneous system is clearly seen with
delta singularities, arising from the finite value of N, superimposed.

5 Conclusions

In this paper we have extended the work of Hu and O’Connell [5] by developing a
method which will give an analytic formula for inverse of any finite N x N symmetric
Toeplitz matrix of band-width 2n + 1 < 2N — 1. The matrix size N enters the
formula as a parameter and does not affect the complexity of the calculation. The
only explicit matrix inversion that is required is of an n X n matrix. Since in most
problems of interest n will be much smaller than N the matrix inversion can be
easily performed using an algebraic computing package.

Acknowledgments

This work was supported by NATO Research Grant No. 0087/87 and the Natural
Sciences and Engineering Research Council of Canada.



J/J o.su ﬂﬂob 55 LWM/L

Figure 3: Mean density of states plotted against « for a one-dimensional nearest-
neighbour tight-binding system of N = 100 sites.
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